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Abstract

Trafﬁc grooming in WDM networks is obtained by intelligently allocating the trafﬁc onto a given set of wavelengths. This paper presents

heuristics for grooming of non-uniform general trafﬁc demands onto a given set of wavelengths available on a unidirectional or bidirectional

ring. The objective is to minimize the number of higher layer equipment, like SONET Add/Drop Multiplexers (ADMs), or MPLS routers. We

map the unidirectional ring onto a linear topology and develop a generalized two-step approach to solve the grooming problem on the

mapped topology. In the ﬁrst step, we allocate the trafﬁc while minimizing the possible number of strings (each string being a collection of

non-overlapping trafﬁc streams) in a manner that yields the optimal number of strings in the linear topology case. We also prove the

optimality of this step in the number of the strings (wavelengths). In the second step we employ a grouping technique to efﬁciently combine g

strings onto a wavelength while minimizing the total number of the ADMs. We also address the problem of grooming the non-uniform trafﬁc

on a bidirectional ring by mapping it onto unidirectional rings, and applying the two-step approach. Moreover, in the case of bidirectional

rings we propose an approach to route the trafﬁc that reduces the total number of the required wavelengths and ADMs. The time complexity

of our technique is at least an order of n less than other proposed approaches, where n is the total number of nodes in the network. The efﬁcacy

of the proposed technique has been demonstrated through a large number of experiments.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

During the last decade, Wavelength Division Multi-

plexing (WDM) networks have emerged as an attractive

architecture for backbone networks. WDM networks

provide high aggregate bandwidth, on the order of several

Terabits per second. Also, WDM networks eliminate the

electro-optic processing delays using wavelength routing

[1]. However, the cost-effectiveness of WDM networks

depends on the amount of the optical passthrough provided

by the network to the given trafﬁc. The amount of the optical

passthrough in turn depends on the trafﬁc pattern and on the

way the trafﬁc between different source and destination
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pairs is groomed (multiplexed) on the available set of

wavelengths. Trafﬁc grooming is thus deﬁned as an

intelligent allocation of the trafﬁc demands, between

different network nodes, onto an available set of wave-

lengths in such a way that reduces the overall cost of the

network.

WDM routing networks support lightpaths, which is a

pure optical communication path between two nodes. In

order to optimize the cost of the network, one needs to take

into account the higher layer that will use these lightpaths

and its connectivity patterns. The Synchronous Optical

Networks (SONET) is currently being used as a higher layer

in WDM networks, and because of its wide deployment and

efﬁcient protection schemes will remain the most likely

option for some time.

In Fig. 1, a typical WDM network is shown with three

nodes. Each node is equipped with an Optical Add/Drop

Multiplexer (OADM), which can selectively add or drop

wavelengths at each node, thus providing an optical

passthrough to the rest of the wavelengths. Each of the

wavelengths dropped at a node is then processed by the

higher layers Add/Drop Multiplexers (ADMs), e.g. a

[image: image7.jpg]
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Fig. 1. An example of an optical network with OADMs and ADMs.

SONET ADM, after conversion into the electronic form.

Thus, the equipment needed at each node corresponds to the

number of wavelengths dropped at each node. To reduce

this number, and consequently the cost of equipment, one

needs to reduce the number of wavelengths dropped at a

node. We can achieve this goal by grooming the trafﬁc in

such a way that all the trafﬁc to and from a node is carried on

the minimum number of wavelengths.

As an example, consider a ﬁve-node linear topology

network, shown in Fig. 2. Let each node be equipped with an

OADM. Each OADM is in turn connected to a number of

SONET ADMs (not shown in the ﬁgure). Having an OADM

on each node will help only drop those wavelengths that

carry the trafﬁc to, or from that speciﬁc node. A wavelength

can bypass a node if it carries no trafﬁc that is transmitted or

received by that node. This will result in the saving of a

SONET ADM. Hence, our objective is to minimize the total

number of the SONET ADMs used in the network to

support all of the trafﬁc by intelligently assigning trafﬁc to

the wavelengths. Let g denote the total number of basic units

of trafﬁc supported by each wavelength. For example, if a

wavelength supports an OC-12 connection, and the basic

unit of trafﬁc is an OC-3, then gZ4. For illustrative purpose,

we assume that
gZ2 in
Fig. 2. Trafﬁc demands or

connections are shown by the line segments between the

source and destination nodes. Also, black circles are used on

(a)



the edges of the segments to represent a SONET ADM that

is used at the corresponding node, and for a speciﬁc

wavelength. To minimize the total number of ADMs

required, out of many possibilities, we could have the

following two allocations of trafﬁc to wavelengths.

(a)
l1: 142, 344; l2: 145; l3: 244; l4: 245;

(b)
l1: 142, 244; l2: 145; l3: 344; l4: 245;

Assignments (a) and (b) are shown in Fig. 2(a) and (b),

respectively. For the ﬁrst assignment the total number of

required ADMs is 10, while for the second assignment the

total number of ADMs is 9. Note that in the second

assignment the trafﬁc between nodes 1 and 2, and between 2

and 4 are sharing the same ADM. This example shows that

by assigning the trafﬁc to appropriate wavelengths, one can

reduce the number of required ADMs. Also, given very high

cost of SONET ADMs, approximately $40,000 for a single

port version, even saving few ADMs translates into savings

of hundred thousands of dollars.

2. Related work

Trafﬁc grooming in WDM networks is comparatively a

new ﬁeld, and has recently started to receive attention.

Few survey papers have been published in this area [3–5].

(b)
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5

Fig. 2. Two different trafﬁc assignments on a linear topology, for the same trafﬁc demands.
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The general problem of trafﬁc grooming with arbitrary

trafﬁc has been proven to be NP-Complete in [2]. Most of

the work related to trafﬁc grooming in WDM networks has

an emphasis on reducing the number of required higher

layer components
[4]. However, there are some notable

exceptions in which other factors, like the network

utilization, are optimized, e.g.
[18,19]. Also, most of the

work focuses on the special cases of the trafﬁc and the

speciﬁc network topologies. Many researchers focused on

obtaining the upper and lower bounds on the number of the

ADMs required for the speciﬁc topologies and trafﬁc

patterns [2,6–9], while few researchers proposed problem-

speciﬁc heuristics
[12,13]. In the grooming literature,

uniform trafﬁc is deﬁned as the same amount of trafﬁc

between all possible source-destination node pairs, while

non-uniform trafﬁc is deﬁned as the variable amount of

trafﬁc between different source-destination node pairs. For

trafﬁc grooming problem, when trafﬁc between different

node pairs is non-uniform, few studies exist
[8,10,12,13].
Many of such studies consider only non-uniform symmetric

trafﬁc, i.e. trafﬁc from(to) a speciﬁc source to(from) a

speciﬁc destination is same.

In [2], the authors besides proving the NP-Completeness

of the problem, also provided algorithms to minimize the

number of the ADMs when the trafﬁc from all nodes is

destined to a single node and all trafﬁc rates are the same.

For the more general case of all-to-all uniform trafﬁc, they

obtained a lower bound on the number of the ADMs

required and provide a heuristic to closely approach that

bound. Finally, they also considered the use of a hub node,

where the trafﬁc can be switched between different

wavelengths, and obtain an optimal algorithm that mini-

mizes the number of the ADMs by efﬁciently multiplexing

and switching the trafﬁc at the hub. In
[6], the authors

considered six different optical WDM ring architectures.

They, then provide bounds on the number of the

wavelengths, number of the ADMs and maximum hop

length for each of the ring architectures. They also

considered three different trafﬁc models, namely, Static,

Dynamic and Incremental, and calculated the bounds for

each of the proposed six WDM ring architecture considering

some speciﬁc trafﬁc model. In
[7], the authors while

grooming the trafﬁc considered the characteristics of the

SONET UPSR and BLSR rings. They presented the lower

bound on the number of the ADMs in a WDM UPSR ring,

under the uniform trafﬁc assumptions. Also they considered

the single-hub UPSR WDM ring and obtained the bound on

the number of ADMs required in case of uniform trafﬁc.

Similarly, they obtain the bounds on the number of ADMs

required for BLSR/2 WDM rings under the uniform trafﬁc

assumption. In [8], the authors concentrated on the Single-

Hub SONET/WDM ring architecture and obtained bounds

on the number of the ADMs required under both uniform

and non-uniform trafﬁc. They reduce the single hub trafﬁc

grooming problem to the bin-packing problem, and hence

used the approximation algorithms for bin-packing to solve




the non-uniform trafﬁc case in a near-optimal way. In [9],

the authors also focused on the WDM rings and obtained the

lower and the upper bounds by decomposing the ring into

sets of nodes and adopting the locally optimal topology

within each set. The optimal solutions obtained from sets of

nodes are then combined to get a near-optimal solution for

the whole ring. In
[10], the authors consider the trafﬁc

scenario in which trafﬁc streams can exist between any

arbitrary pair of nodes. However, the demands between

same node pairs are considered to be symmetric. In [12], the

authors proposed few algorithms to achieve trafﬁc grooming

in SONET/WDM rings, under both uniform and non-

uniform trafﬁc. They followed a two-step approach, namely

circle construction and circle grooming. In the circle

construction phase they try to construct as few circles as

possible to include all the requested connections; this helps

to minimize the number of the wavelengths. In the circle

grooming phase they try to combine the circles in such a

way that the number of the ADMs used can be minimized.

In [13], the authors improved the work done in [12] by using

the simulated annealing to groom the circles.

Our contribution to the grooming problem is many-fold.

We develop a generic model that can accommodate general

non-uniform and asymmetric trafﬁc with an arbitrary

number of nodes and arbitrary grooming factor. We devise

algorithms to solve the trafﬁc grooming problem for our

generic model. The proposed algorithms scale well with the

problem size, and are efﬁcient in terms of the solution

quality, and run time. Another contribution of our work is

that, in case of bidirectional rings, we demonstrate that the

shortest-path routing does not necessarily lead to minimiz-

ing the number of the wavelengths and the ADMs, and

propose an approach to route the trafﬁc in a way that reduces

the total number of the required wavelengths and ADMs.

The rest of the paper is organized as follows. In Section 3

we map the unidirectional ring onto a linear topology and

present the two-step approach that solves the grooming

problem for non-uniform trafﬁc. In Section 4 we map the

bidirectional rings onto a linear topology and also

investigate the different routing strategies. Section 5

presents several experimental results, while Section 6

concludes the paper.

3. Trafﬁc grooming on unidirectional rings

In this section, we deﬁne the terms used in the rest of the

paper, and map the unidirectional ring onto a linear

topology. We then develop a two-step approach that handles

all types of trafﬁc, uniform and non-uniform (including both

symmetric and asymmetric), on the mapped topology. We

also show that the ﬁrst step of our approach is optimal in the

number of the wavelengths for a linear topology.

Let the total number of nodes be
N, and let the trafﬁc

matrix
C
be deﬁned as, CZ[cij] such that 1%i%N
and

1%j%N. Each cijentry is a set that represents the trafﬁc
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units between nodes i and j and consists of jcijjZnijnumber

of basic units of data, namely, cijZfcрij1Ю;cрij2Ю;.; cрijnijЮg. We



3.1. Mapping of a unidirectional ring onto a linear topology

call each such basic unit of data,
cрkЮ


ij, astream
or a


In this subsection we devise an innovative method to map

connection. Let r represent the rate of the basic stream, e.g.

an OC-3 connection. Our objective is to accommodate the

demands in the trafﬁc matrix
C
with the least possible

number of wavelengths (W), and number of SONET ADMs

(D). In general, by reducing W, we will be able to reduce D,

since for each originating and terminating wavelength at a

node (in the same direction) we need an ADM. This,

however, also suggests that to reduce D, besides reducing

W, we need to allocate most of the trafﬁc to and from a node

on as few wavelengths as possible.

To determine the lower bound on the number of

wavelengths we will deﬁne the term
density
(d) as the

maximum number of streams on any of the N links. Let link

l be the link between nodes l and (lC1)modN. Then density

dlat link l can be deﬁned as:

X


the unidirectional ring onto the linear topology.

In a unidirectional ring of
N
nodes, let the nodes be

numbered from 1 to
N, starting from any node, in the

direction of communication. Then, the trafﬁc from node i,

where 1!i%N, destined to node j, where
j!i, must be

crossing the links between nodes N and j. By adding NK1

dummy nodes to an N node linear topology, we can emulate

the behavior of an N node unidirectional ring. All the trafﬁc

sourced by
i
and destined to
j, for
j!i
and
iO1, on a

unidirectional link, will now be terminating at node NCj.

In Fig. 3, a simple ﬁve-node unidirectional ring is shown.

Also the unfolding of the ring into a linear topology is

depicted. Nodes 6, 7, 8, and 9 (also represented as 10, 20, 30,

and 40, respectively) are the added dummy nodes, which

correspond to nodes 1, 2, 3, and 4, respectively. Trafﬁc

sourcing from a node and destined to a lower indexed node

dlZ



i%l;jOl


nij

(1)


will now terminate at the corresponding added dummy

node. For example, trafﬁc originating at node 4 and

terminating at destination 1, will now terminate at node 6,

Similarly, the density can be deﬁned at a node. Let di
stand for the density at node i, and Ti, Si, and Pistand for the

number of terminating streams at node
i, the number of

starting streams from node i, and the number of streams that

are passing through node i, respectively. Then:


as shown in Fig. 3. Once all the trafﬁc is mapped from a

unidirectional ring onto a linear topology, the solutions

developed for the linear topology below will be applicable

to the unidirectional ring too.

diZ maxрTi; SiЮCPi
d Z max di;
1 %i% N

i


(2)

(3)



3.2. A two-step approach

In this section, we present a two-step approach to solve

the grooming problem on a linear topology. In the ﬁrst step,

The density at a node or link shows that to accommodate

the trafﬁc, we need at least this much bandwidth (in terms of

the number of streams). Therefore, the minimum number of

wavelengths can be determined as:

d

WLBZ
(4)


we devise an algorithm MIN-STRINGS that arranges a

number of non-overlapping streams into a
string, thus

making strings of streams in such a way that minimizes the

total number of strings. Each string will be formed such that

the space between streams in the same string is minimized.

This algorithm optimally minimizes the number of strings,

g

To determine a tight lower bound on the number of

ADMs for non-uniform trafﬁc is, however, quite difﬁcult. In

[10], the authors generalized the work done by
[14], by

incorporating the grooming factor, as follows.


which is equivalent to the lower bound on wavelengths. In

the second step, we use a grouping heuristic that groups g

(a)

3

4

DLBZ


XN

iZ1


maxрTi; SiЮ

g


(5)



B



5



1


2

A



C

In [11], the authors proposed an even tighter bound for

circular rings as follows

XN

WLBring
Z
рTiCSi KmiЮ(6)




(b)



	1
	'

2'3'4'


iZ1

where miis the size of the maximal matching of the bipartite

graph, constructed at each node, of starting and terminating




A


1
2
3



B

C


4
5
6
7


8
9

streams as vertices, and edges correspond to non-overlap-

ping streams.


Fig. 3. Mapping a unidirectional ring into linear topology. Nodes 6–9 are

the added dummy nodes corresponding to nodes 1–4.
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(or fewer) strings onto each wavelengths. During grouping,

our objective is to group strings together in a manner that

results in reducing the number of the ADMs.

3.2.1. Minimizing the number of strings

In this subsection we present a novel technique that

accommodates the general non-uniform trafﬁc and produces

the least number of strings, equal to the density d, thus

leading to the least number of wavelengths, W for a linear

topology.

To approach the problem in hand, a visualization of the

problem will be helpful. Considering Fig. 2 again we notice

that to compactly pack the trafﬁc streams we can combine

them horizontally as strings such that no two trafﬁc streams

in a string overlap. Formally, GZ(V, E), where V is the set

of nodes and
E
is the set of edges, is an interval graph

provided that one can assign to each an interval Ivsuch that

IuhIvis nonempty precisely when
u,
v2E. Visualizing

each stream as an interval we can then form an interval

graph consisting of all the streams such that, each stream is

represented by a vertex and there is an edge between each

pair of vertices (intervals) that overlaps.

The problem of ﬁnding the minimum number of strings is

then equivalent to ﬁnding a vertex coloring of the

corresponding interval graph with a minimal number of

colors [15]. The graph coloring problem for general graphs

is NP-Complete [16]. However, for interval graphs we will

present a polynomial time algorithm that is optimal in the

number of colors (in our case each color corresponds to a

string). For further information on interval graphs, coloring




of interval graphs, and its complexity issues, please consult

[15–17].
Let us represent each stream cklwith a pair of coordinates

(Xmin(ckl),
Xmax(ckl)) such that
Xmin(ckl)Zk
and

Xmax(ckl)Zl. An
ith string,
Ri, can then be deﬁned as a

set of non-overlapping streams such that its member streams

are not present in Rj, where 1%j%jCj, jsi, and jCj is the

total number of streams. From now on, we will use the terms

stream and segment interchangeably.

Let L represent a sorted list of all the streams cij2C, and

L(i) represent the
ith element in the list
L. The sorting

criterion is explained in the algorithm itself. Also let us

deﬁne an operation REMOVE(L(i)) on list L that removes

L(i) from the list L and hence decrements its size, jLj, by one

(for iR0). The algorithm MIN-STRINGS is then given in

Fig. 4.
The algorithm MIN-STRINGS starts by sorting the

segments in list L in ascending order with respect to their

Xmin coordinate. For segments having the same
Xmin

coordinates, longer segments are selected ﬁrst (for segments

with the same
Xmin and length, the tie can be broken

randomly). For each string we repeat the following (lines

3–18). We ﬁrst initialize each string by the ﬁrst element in

the sorted list and remove that element from the list (lines

5–8). We then ﬁll the string by searching the whole list, and

accommodating the very ﬁrst non-overlapping segments

(lines 9–15). This way, in a single scan of the list we will be

able to ﬁll a string with available non-overlapping segments.

The algorithm MIN-STRINGS is simple and elegant and

works for any general non-uniform trafﬁc. Also, it always

Fig. 4. Algorithm MIN-STRINGS for arrangement of trafﬁc steams onto fewest number of strings.
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ﬁnds the optimal (minimum) number of strings, equal to the

density
d, as proven by Theorem 1 below. Moreover,

simulation results verify that the algorithm compactly packs

the segments in each string, which means that most of the

segments are connected to each other. This reduces the

number of the ADMs since two connected segments use the

same ADM at their connecting point.

We can determine the complexity of MIN-STRINGS as

follows. For each string, MIN-STRINGS scans the whole

list. As the number of the strings produced by MIN-

STRINGS is equal to the density d, the complexity of the

algorithm is O(d!jCj). If the trafﬁc between different node

pairs is uniformly distributed between zero and some

number h, then on average the total number of segments

between all nodes pairs is (N2!(h/2)), and the complexity

of the MIN-STRINGS can be given as O(d!N2!h).

Before proving the optimality of the MIN-STRING

algorithm, we will deﬁne a few terms, followed by lemmas

that are required for the proof.

Let nodes be numbered 1,2,.,N, and the links be

numbered 1,2,.,NK1, such that link i is between nodes i

and iC1. Let U be the set of all given segments, i.e. UZ{a1,

a2,.,ajCj}. Let jjbe a set that consists of segment ajand all

segments that overlap with ajand starts earlier than or at the

same node as aj, i.e. jjZ fxjxj 2Uo рXminрxЮЮ%XminрajЮЮ



oрXmaxрxЮO XminрajЮЮg. Let
pibe a set deﬁned as,

piZ fjmjsupXminрamЮ%i!XmaxрamЮmg. Basically, if a segment am
starts at node i, then piZjm. If no segment starts at node i

then we will select such a segment am, which passes through

node (link) i, and its starting point is closest to node i among

all the segments passing through node (link) i. piwill then

consist of segment amand all the segments that overlap with

am. Note that if no segment passes through link i, then piwill

be empty. Finally, let P be a sequence of sets pi, i.e. PZ(p1,

p2,.,pNK1).

The following lemmas are needed for the proof of the

theorem.

See Lemma 1 in Appendix

See Corollary in Appendix.

See Lemma 2 in Appendix.

The following theorem is the main result.

See Theorem 1 in Appendix.

Fig. 5 shows the output of MIN-STRINGS for a sample

input. The trafﬁc demands are shown in
Fig. 5(a). Each

segment corresponds to a single trafﬁc unit. Fig. 5(b) shows

the demands after sorting. Notice that longer segments

precede shorter segments when their Xmin coordinates are

same. Fig. 5(c) shows the output of MIN-STRINGS. Notice

that the number of strings is exactly equal to the density,

which is 8 in this case.

(a)



1

2



d = 4

1

3

4



5

6



d = 7

2

78
9



10



d = 7

3




d = 8

4




d = 6

5

(b)



4

3



1

2


Traffic demands

9

67


8


1112

13

14

(c)



4

3

1

2


5

Traffic demands after sorting

9

6

7

8

5

Strings obtained by MIN-STRINGS


11

1210


11

12

10



13

14



13

14

Fig. 5. Output of the MIN-STRINGS algorithm for a sample set of trafﬁc demands.
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Please note that on a unidirectional ring, the segments

between original nodes and the added dummy nodes could

be overlapping. Any segment crossing the link between

nodes i and iC1, for 1%i%N, overlaps with any segment

crossing the link between nodes
NCi
and
NCiC1. For

example, from Fig. 3(b) it appears that segments A and C

can be combined in a string. However, they are overlapping

segments. The links between nodes 6 and 8 are the same as

the links between nodes 1 and 3. Therefore, we need to

modify a few expressions for unidirectional ring. Let di,iC1

be the density of the link between nodes i and iC1. For a

unidirectional ring, di,iC1 can be deﬁned as:

Xi
XNXN
XK1



complexity of the technique by an order of N. In Section 5, we

will examine the trade-off between number of ADMs and the

corresponding time complexity of the heuristic, for the

unidirectional ring.

3.2.2. Grouping algorithm

By now we have the set of strings, R, of size jRj. In this

subsection we will combine the
jRj
strings to obtain
W

wavelengths, as given by equation
[4]. Also while

combining the strings, our objective will be to minimize D.

Before presenting the algorithm for grouping we deﬁne a

few terms. Let us deﬁne SRi
as the set of node points for

which string
i
needs an ADM. In general each segment

di;iC1Z


kZ1 lZiC1


nklC


kZiC2 lZiC1


nkl

(7)


needs an ADM at its Xmin and Xmax positions. However,

two connected segments on the same string can share a

single ADM, because Xmax of one of the segments is the

The ﬁrst term includes all the sources before and

including node i, and the destinations after and including

node
iC1. The second term considers all the sources
k

between iC2 and N that are transmitting the trafﬁc either to

node iC1, or to nodes after iC1 but before node k.

Similarly, we need to make few minor modiﬁcations in

the algorithm MIN-STRINGS. While packing each string

we need to select only non-overlapping segments. There-

fore, besides checking the condition, Xmax(A)%Xmin(B)

(line 11 in MIN-STRINGS), we also need to check Xmin(A)

RXmax0(B), where Xmax0(B) is deﬁned as:

(


same as Xmin of the other segment. Please also note that in

the mapped linear topology having any Xmin or Xmax at

node i (1%i%N) is equivalent to having it on node NCi,

and vice versa. We also deﬁne a saving function between

strings i and j as:

SavingрRi; RjЮ Z jSRihSRjj(8)

So the
saving of two strings depends on the number of

node points, where both strings need an ADM due to the

overlap of their component segments’ endpoints (Xmin

and/or Xmax). Maximizing the saving function increases the

sharing of ADMs, resulting in fewer ADMs. Also we deﬁne

Xmax0рBЮZ

0;


1 %X maxрBЮ%N


an operation MERGE on any two strings Riand Rjas follows:

X maxрBЮmod N;
X maxрBЮON


MERGEрRi; RjЮ h SR) SRg SR

(9)

i


i


j

Note that enforcing the above constraint will take into

account the actual physical capacity of a node. Basically,

here we are making sure that each string consists of only non-

overlapping segments. Later, in a grouping algorithm we will

combine at most ‘g’ number of such strings per wavelength,

thus never exceeding the physical capacity of a node.

The number of strings determined by MIN-STRINGS in

this case, will not necessarily be equal to the density. In fact,

the problem of ﬁnding minimum number of strings in rings

can be reduced to a circular-arc coloring problem [11], which

is an NP-Complete problem [16]. The experimental results,

however, show that the number of strings determined by

MIN-STRINGS even in this case is quite close to the density.

Note that we are opening up the ring at a particular node only.

Opening the ring at different locations can affect the results of

MIN-STRINGS. The distribution of the trafﬁc between

actual node and its dummy node could also affect the total

number of strings determined by MIN-STRINGS. For

example, in Fig. 3, out of a total of h streams, say, between

nodes 2 and 4, a fraction of trafﬁc streams can be allocated

between nodes 7 and 9, thus inﬂuencing the output of MIN-

STRINGS. One of the possibility is to open the ring at each

node, each time extending the ring as explained above, and

selecting the best solution. However, this will increase the


Thus, the MERGE operation basically superimposes

those node points of a string onto another where an ADM

is needed. Let the list L now include all the elements of the set

of strings R in the order of their creation by MIN-STRINGS.

The grouping algorithm given in Fig. 6 is then executed.

The algorithm GROUPING starts with a list consisting of

all the elements of the set R. Each wavelength is initialized

with the very ﬁrst string in the list L (line 6). The added

string is removed from L
(line 8). Next, such a string is

selected from all the remaining strings that has maximum

common node points, thus maximizing the saving (line 11).

The largest value of
saving, corresponding to a pair of

strings, indicates that grouping these strings together in a

wavelength will lead to sharing the largest number of

ADMs. The selected string is then merged with the

previously selected strings on the same wavelength

(line 13). For each wavelength we group g strings. However,

note that the number of strings selected for the
Wth

wavelength may be fewer than
g. The number of ADMs

required for each wavelength is then the number of Xmin

and Xmax points over all the segments in the wavelength,

while excluding the multiplicity of common node points.

Note that we are allowing trafﬁc between same pair of nodes

to be allocated to different wavelengths.
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Fig. 6. Algorithm to group the strings obtained by MIN-STRINGS into W wavelengths while minimizing the number of the required ADMs.

The complexity of the algorithm GROUPING is O(jRj2).

For the linear topology, jRjZd, and hence the complexity

for linear topology can be expressed as O(d2). As
jRj
is

upper bounded by the total number of segments N!(h/2)

(an extreme case when each string has just one segment),

hence the dominant factor in the overall complexity of the

two-step approach comes from MIN-STRINGS that is

O(d!N2!h).

4. Trafﬁc grooming on bidirectional rings

In this section, we show how to groom the non-uniform

trafﬁc on a bidirectional ring by mapping it onto

unidirectional rings, which in turn will be mapped onto

the linear topology. Also, we explore two segment routing

options, namely, when the segments are routed using the

shortest path, and when the route is not ﬁxed and thus may

or may not follow the shortest path route.

We ﬁrst start with the shortest path approach. First, note

that similar to the case of the unidirectional ring, the linear

topology can also emulate a bidirectional ring by adding

some dummy nodes. However, this time the number of

added dummy nodes is justN2
. The allocation of the trafﬁc

streams, between source s and destination d, to the extended

linear topology then can be explained as follows. When (dO

s), we will schedule the trafﬁc from s to d if (dKs!(N/2))

and from sC(N/2) to d if (dKsO(N/2)). In case when ((dK

s)!(N/2))), we will split the trafﬁc into two halves, and

assign each half from s to d and from sC(N/2) to d. Also in

case when (d!s) and ((dKs)O(N/2))) we will route the

trafﬁc from
s
to
dC(N/2). Note, however, that above


assignment on a single ring can lead to segments in both

directions. Applying MIN-STRINGS may result in com-

bining opposite direction segments into a string, thus

implying that a bidirectional ADM (on a single wavelength)

exists. To avoid such an assumptions and to consider ADMs

that operate only in one direction, we need to modify our

model. One of necessary update is to consider that each

wavelength can contain streams
ﬂowing
in one direction

only. Groups of such g wavelengths then can be assigned to

two different ﬁbers (in case of unidirectional ﬁber) or to

same ﬁber (in case of bidirectional ﬁber). Let the total trafﬁc

on a bidirectional ring be split between two unidirectional

rings A and B. Also, let the corresponding extended linear

topology, of ring A and B be represented as L(A) and L(B),

respectively. The assignment of trafﬁc to L(A) and L(B) can

then be carried out as explained in algorithm ASSIGN-

MENT, given in Fig. 7.
Algorithm ASSIGNMENT is self-explanatory.
Fig. 8
shows how the trafﬁc can be split between two different

rings. Also it depicts the assignment of the trafﬁc on

corresponding extended linear topologies. The generality of

the above mentioned assignment strategy is evident by

noting that we are able to handle both symmetric and

asymmetric trafﬁc, and are still able to use the same

heuristics that we developed for the extended linear

topology for unidirectional ring.

4.1. Non-shortest path routing

In this section, we will explore non-shortest path routing

to reduce the number of the wavelengths and the ADMs.

The above mentioned assignment algorithm uses the
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Fig. 7. Algorithm for assignment of segments on two unidirectional rings to

emulate a bidirectional ring.

shortest path to route the trafﬁc between different source

destination pairs. However, shortest path may not always

lead to the least number of the wavelengths and the ADMs.

This can be best illustrated with the help of an example.




In Fig. 9, two ring A and B are shown. Suppose g in this case

is 3. Density d of ring A currently is 2 while that of ring B is

3. Currently the number of ADMs required on each ring is

also 3. Suppose we need to route a trafﬁc stream originating

from node 2 and terminating at node 1. Using shortest path

routing we will end up selecting ring B. However, this will

not only increment the number of required wavelengths for

ring B but also needs two more ADMs. On the other hand, if

we choose the longer route on ring
A, the already present

ADMs will be sufﬁcient to accommodate the stream. This

example clearly illustrates that there could arise situations

where using shortest path routing does not lead to the

minimum number of the wavelengths and the ADMs.

Hence, to address this issue in the following we will develop

an algorithm, TRAFFIC-SHIFTING, that uses three

different criteria to relax the shortest path routing restriction,

and is given in Fig. 10.

In general, we will ﬁrst assign all the trafﬁc streams on

L(A) and
L(B) using shortest path. After that we will

repeatedly select the ring with larger density and check each

of the non-locked segments passing through its maximum

density link, selecting the longest segment ﬁrst. The selected

segment is then checked for its eligibility to move to the

other ring using CRITERION 1, 2 or 3. In case the shifting

of segment is approved, the segment is shifted (now being

routed over longer path) and is locked to prohibit any further

shifting (to avoid cycles). Note that, to be able to predict

exactly that a shifting of the segment from L(P) to L(Q) will

lead to the reduced number of the ADMs, we need to

determine the corresponding wavelengths of all other

segments. Due to our two step approach, however, we do

not determine the corresponding wavelengths before routing

(a)
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(b)



4



5



3



1
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(c)
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1
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(e)


L(A)

L(B)


1

1


2

2


3

3


4

4


5

5


6

1'

6


7

2'

7

Fig. 8. Conversion of a bidirectional ring into linear topology. bN/2c nodes are added as dummy nodes. In (a) a sample trafﬁc set is shown, while (b) and (c)

shows how trafﬁc in (a) can be split between between two unidirectional rings. Mapping of rings in (b) and (c) is shown in (d) and (e), respectively.
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CRITERION 3, shifts the segment from one ring to another

only if such a move does not increase the density of either of

4


3

1

(a)



2



4


3

1

(b)



2


the two rings. And hence potentially decreasing the number

of strings from both the rings,
P
and Q, but not at the

expense of ring
P. Note that using CRITERION 3 fewer

segments will be allowed to shift as compared to

CRITERION 2 and CRITERION 1. Similarly CRITERION

2 is more restrictive than CRITERION 1.

Fig. 9. Example to illustrate that the shortest path routing does not

necessarily gives the minimum number of the wavelengths and ADMs.

all of the segments. Hence, at this stage our approach tries to

reduces the total number of strings on each ring in a manner

that will not lead to an increment in the number of ADMs.

The three criteria used in algorithm TRAFFIC-SHIFTING

are explained below.

CRITERION 1 Approve the segment if
d(Q) is not an

integral multiple of
g, else try CRI-

TERION 2.

CRITERION 2 Approve the segment if d(P)Od(Q), else

try CRITERION 3.

CRITERION 3 Approve the segment if shifting the

segment from
L(P) to
L(Q) does not

increase d(Q).

The intuition behind CRITERION 1 is that if d(Q) is not

an integral multiple of g then some space will be left in at

least one of the wavelengths of ring Q, and hence we can

utilize it by placing a segment in it, while potentially

decreasing the number of strings from the ring
P.

CRITERION 2 tries to balance the difference of densities

(and hence number of strings) between both rings. Finally


5. Experimental results

In this section, we will present the results of applying the

techniques proposed in Sections 3 and 4 to various networks

with different topologies and parameters. We are more

interested in conducting experiments with non-uniform and

asymmetric trafﬁc, because uniform trafﬁc can be con-

sidered as a special case of general arbitrary trafﬁc.

We divided the experiments into three suites, corre-

sponding to unidirectional topologies, bidirectional topolo-

gies, and the comparison with other similar work reported in

the literature, respectively. The following parameters were

used for the experiments in suite 1 and 2. The number of

nodes N were varied from 5 to 25 with an increment of 5.

The value of the grooming factor, g, was assigned to 1, 4, 8,

and 16 in each of these experiments. Assuming that our

basic data stream is an OC-3, these values of
g
then

correspond to OC-3, OC-12, OC-24, and OC-48,

respectively.

For each of the network topologies, between different

node pairs (i, j), we generated a set of trafﬁc streams cij
whose cardinality is taken from an integer uniform

distribution in the closed interval [0,
g]. Each reported

result is an average value obtained by running 30 batches of

Fig. 10. Algorithm for trafﬁc shifting from shortest path to longer path, to reduce the number of required ADMs.
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Fig. 11. Number of the ADMs for a unidirectional ring.

30 runs each. The conﬁdence intervals were computed, but

are not shown here.

Experiments in suite 1 were conducted on unidirectional

rings. Fig. 11 shows the number of the ADMs required for a

unidirectional ring, for different values of g. Note that when

gZ1, there will be no trafﬁc grooming, because each basic

stream will occupy the whole wavelength between source

and destination nodes. Fig. 12 compares the number of the

wavelengths determined by MIN-STRINGS for a uni-

directional ring, and the corresponding lower bound on the

number of the wavelengths, i.e. density, when gZ8. From

Fig. 12, it is evident that the number of the wavelengths

determined by MIN-STRINGS is exactly equal to lower

bound when the problem size is small (for example, when

number of nodes are 5 and 10), and slightly exceeds the

lower bound when the problem size increases. In Section 3,

we discussed the time-cost tradeoff in opening the ring at

single or multiple nodes. Fig. 13 shows the savings in the

number of the ADMs that can be obtained by opening the

unidirectional ring at each of the N nodes and selecting

the best solution. The saving in the number of the ADMs

increases when the problem size increases (and so does the

computing time). On average we are able to save 5–10

ADMs by opening it at each of the N nodes and selecting the

best solution. Given that a single port SONET ADM costs

Calculated
Density

180
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140

120

100

80

60

40

20

0



Fig. 13. Number of the ADMs saved by opening the unidirectional ring at

each of the N nodes.

$40,000 or more, this saving could mean a total saving of

$200,000–$400,000. On the other hand by opening the ring

at each of the N nodes, the time complexity increases by a

factor of N. However, the run time of our technique allows

one to afford this additional computation to save large

amounts of money while designing WDM networks. For

example, the real time taken by the program, for NZ20 and

gZ8, was 0.62 and 5.2 s when it was opened at node zero

and when it was opened at each of N nodes, respectively.

Similarly, the real time taken by the program for the above

mentioned two options was 2.71 and 21.7 s when
gZ16.

Comparison of our results with other proposed techniques,

e.g. [12] reveals that with far less complexity (at least an

order of N) we have achieved either less or comparable costs

in terms of the number of the ADMs.

For all of the above experiments the amount of the trafﬁc

generated between each node pair is related to the grooming

factor (the trafﬁc generated for each node pair is an integer

uniformly distributed in the closed interval [0, g]). We also

conducted experiments to study the effect of the different

grooming factors while using the same input trafﬁc

matrices. For these experiments, the trafﬁc generated for

each node pair is an integer uniformly distributed in the

closed interval [0,16]. The results are collected for gZ4 and

gZ8. Figs. 14 and 15 show the number of the ADMs and

the number of the wavelengths required to accommodate the

input trafﬁc, respectively. Note that the number of the

wavelengths required for gZ8 are almost exactly half of

that required for
gZ4, while the number of the ADMs

required for gZ8 are close to half of that required for gZ4.

This shows that our two-step approach is scalable with the

grooming factor.

In the case of rings even the ﬁrst step of our two-step

technique, i.e. minimizing the number of strings, is

NP-Complete. Therefore, to compare the performance of

5


10


15

No. of Nodes


20


25


MIN-STRINGS, in this case, we compared the results MIN-

STRINGS with the results given in [11]. In Ref. [11], the

Fig. 12. Number of the wavelengths and the corresponding lower bound for

a unidirectional ring.


authors solved the wavelength assignment problem in WDM

rings while minimizing the number of ADMs. They proposed
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Table 1
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MAF, IMat, and IMer
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ﬁgure, it is evident that we can improve on the shortest path

approach by relaxing the shortest path constraint. Also both

C1 and C2 perform better than C3, because they have more

ﬂexibility in shifting the trafﬁc streams from shortest path

routes to other routes.
Table 2
shows the saving in the

Fig. 14. Number of the ADMs when the same input matrices are used for the

experiments with gZ4 and 8.

three heuristics, namely,
Modiﬁed Assign First
(MAF),

Iterative Matching (IMat) and Iterative Merging (IMer), and

presented the ADM savings over 200 experiments. Whenever

two segments shared a common node this was counted as an

ADM saving. Table 1, compares the performance of MIN-

STRINGS to the MAF, IMat, and IMer heuristics, for the

same network setup (NZ16, and number of streams

generated randomly between 16 and 256). On average, our

proposed MIN-STRINGS algorithm performed 204, 145,

and 117% better than MAF, IMat, and IMer, respectively,

which is shown by Improvement1 in
Table 1. We also

experimented by opening the ring at each of the N nodes, and

selecting the best solution. This introduced an improvement

over our initial solution which is about 8% (shown in Table 1
as Improvement2). This translates into a further improve-

ment of 20, 16, and 14%, over MAF, IMat, and IMer,

respectively.

Suite 2 consists of experiments for bidirectional rings.

Fig. 16
shows the number of the ADMs required for a

bidirectional ring, using shortest path and TRAFFIC-

SHIFTING algorithm, when
gZ16. Note that the results

were collected for the TRAFFIC-SHIFTING algorithm with

all three different criteria, namely, CRITERION 1 (C1),

CRITERION 2 (C2), and CRITERION 3 (C3). From the

g=4
g=8


number of ADMs obtained by using C1, C2, and C3 over the

shortest path routing (C0) option, when gZ8. Using either

C1 or C2, for large problem sizes we were able to save 74

ADMs. On average, criteria C1, C2 and C3 saved 36.1, 35.6,

and 6.2 ADMs, respectively, over shortest path option.

Using $40,000 as the price for a single port SONET ADM,

this saving translates into 1.44 million, 1.42 million, and

0.24 million dollars, respectively.

Suite 3 consists of experiments conducted to compare the

similar work done by authors in Ref. [12]. We selected the

same parameters as reported in
[12]
to be able to make

meaningful comparisons. We will report four different

experiments. Since the authors in
[12]
provided many

results for uniform trafﬁc, in
Fig. 17
we compared the

performance of our algorithms for
gZ4 and a uniform

trafﬁc of three units between randomly selected node pairs,

on a unidirectional ring. We used both variations: opening

the ring at a single link (Single open), and opening the ring

at each of the N links and selecting the best results (N open).

However, in this case both variations yield the same results.

We attribute this to the uniform nature of the trafﬁc between

different node pairs. Fig. 17 shows the number of ADMs

saved by using our algorithms over that of reported in Ref.

[12]. Keeping in mind that each ADM costs thousand of

dollars the saving in the number of ADMs is substantial. For

second experiment we generated a non-uniform trafﬁc in the

closed interval [0,5] for a unidirectional ring. Fig. 18 shows
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Fig. 15. Number of the wavelengths when the same input matrices are used

for the experiments with gZ4 and 8.
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Fig. 16. No. of the ADMs for a bidirectional ring; gZ16.
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Saving in number of ADMs using TRAFFIC-SHIFTING algorithm for

bidirectional ring when gZ8
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the results when gZ4. We notice that the performance of


Our, g=8

our algorithms increase over that reported in
[12], when

non-uniform trafﬁc is considered. Also, opening the ring at

each of the N links, though increases the complexity, saves

substantial number of ADMs while accommodating the very

same trafﬁc. The third experiment is also conducted on a


30

20


Zhang, g=16

Our, g=16

8
9
10 11 12 13 14 15 16 17 18 19 20

No. of Nodes
unidirectional ring. Non-uniform trafﬁc is generated in the

closed interval [0,5]. However, grooming factors of 8 and 16

are considered. We computed the
Saving Percentage in

ADMs, as deﬁned in Ref. [12], SZ рN:WKDЮ=рN:W Ю, where

as
D was deﬁned earlier as the total number of SONET


Fig. 19. Saving percentage in ADMs, with non-uniform trafﬁc, gZ8 and 16,

on a unidirectional ring.

ADMs required to accommodate the trafﬁc. Fig. 19 shows

that for both gZ8 and 16 in most of the cases the saving

percentage of ADMs generated by our algorithms is more

than that reported in Ref.
[12]. Finally, the fourth

16
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0


Zhang
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Our, N open


experiment is conducted on a bidirectional ring. Grooming

factors of 8 and 16 are considered and a non-uniform trafﬁc

is generated in the closed interval [0,5]. Once again results,

shown in Fig. 20, illustrate that in most of the cases the

saving percentage of ADMs obtained by our algorithms is

more than that reported in Ref.
[12]. Thus this suite of

experiments demonstrates that our proposed algorithms can

generate cost-effective solutions in less, or at most equal,

computation complexity.

6. Conclusions

8
9
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Fig. 17. Number of the ADMs saved with uniform trafﬁc and gZ4 on a

unidirectional ring.



In this paper, we address the grooming of the non-uniform

trafﬁc on unidirectional and bidirectional rings. We map the

unidirectional rings onto a linear topology, and then develop

a two-step approach to solve the grooming problem, while
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Fig. 18. Number of the ADMs saved with non-uniform trafﬁc and gZ4 on a

unidirectional ring.
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Fig. 20. Saving percentage in ADMs, with non-uniform trafﬁc, gZ8 and 16,

on a bidirectional ring.
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minimizing the number of the wavelengths and the ADMs,

for the mapped topologies. For the ﬁrst step, an algorithm

MIN-STRINGS is developed that produces the optimal

(minimum) number of strings on a linear topology, while

compacting each string with trafﬁc streams. Optimality of the

algorithm is proven. For the second step, an effective

heuristic is designed to group g strings for each wavelength

such that the number of the ADMs used per wavelength are

minimized. Also, the bidirectional rings are mapped onto

unidirectional rings and the two-step approach is used.

Moreover, a study is conducted on routing strategies for

bidirectional rings to minimize the number of the required

wavelengths and ADMs. Few approaches are proposed that

lead to considerable reduction in the number of the required

wavelengths and ADMs. Finally, the efﬁcacy of the proposed

techniques is demonstrated using a large set of experiments.
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Appendix A

Lemma 1. jjjj%d for 1%j%jCj

Proof.
jjjjOd
implies that at some link, say
l, where
lZ

Xmin(aj), the number of segments traversing the link is greater

than d, which contradicts the deﬁnition of d. Hence jjjj%d.

Corollary. jpij%d for 1%i%NK1

Proof. By deﬁnition, piZjmfor 1%m%jCj, or piZf. How-

ever, from Lemma 1 we have jjmj%d. Hence, jpij%d. ,

Lemma 2.
In each iteration, k, of the MIN-STRINGS

algorithm (lines 3–18, Fig. 4), exactly one member of each

nonempty pi, 1%i%NK1, will be selected for inclusion in

string k.

Proof. As MIN-STRINGS ﬁrst sorts all the segments in

ascending order with respect to their Xmin coordinates, in

each iteration k (lines 3–18, Fig. 4), the sequence P will be

inspected in order, and if the element, pi, is not empty then:

(a) Either the segment that was chosen in the previous

nonempty element,
pj, is not a member of
pi, and

therefore does not overlap with the members in pi. In this

case, a new segment in pican be chosen for inclusion in

the string, and will be removed from set pi. Or,

(b) the segment, ak, that was last chosen from the previous

non-empty member, pj, is also a member of pi, and will

also be removed from pi. ,

In both cases, the size of all the nonempty sets, pi, which

are members of the sequence L, will be reduced by 1.

Theorem 1.
MIN-STRINGS algorithm is optimal in the

number of strings.



Proof. As d is the lower bound on the number of strings, we

will prove that the number of strings obtained by MIN-

STRINGS algorithm is equal to
d, i.e.
jRjZd, and is

therefore optimal. Since
jpij%d, 1%i%(NK1), then by

Lemma 2, in d or less iterations we will be able to select all

the segments ak2pi, for the strings. Let k*be the link with

density
d. Then
jpk*jZd. Hence the total number of

iterations required to select all the segments is d. Since each

iteration corresponds to a string, then jRjZd. ,
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